Linearly stable subharmonic orbits in strongly monotone time-periodic dynamical systems

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Convergence Time towards Periodic Orbits in Discrete Dynamical Systems

We investigate the convergence towards periodic orbits in discrete dynamical systems. We examine the probability that a randomly chosen point converges to a particular neighborhood of a periodic orbit in a fixed number of iterations, and we use linearized equations to examine the evolution near that neighborhood. The underlying idea is that points of stable periodic orbit are associated with in...

متن کامل

Detecting unstable periodic orbits in chaotic continuous-time dynamical systems.

We extend the recently developed method for detecting unstable periodic points of chaotic time-discrete dynamical systems to find unstable periodic orbits in time-continuous systems, given by a set of ordinary differential equations. This is achieved by the reduction of the continuous flow to a Poincaré map which is then searched for periodic points. The algorithm has global convergence propert...

متن کامل

Hamiltonian Dynamical Systems without Periodic Orbits

The present paper is a review of counterexamples to the “Hamiltonian Seifert conjecture” or, more generally, of examples of Hamiltonian systems having no periodic orbits on a compact energy level. We begin with the discussion of the “classical” and volume– preserving Seifert conjectures. Then the constructions of counterexamples to the Hamiltonian Seifert conjecture in dimensions greater than o...

متن کامل

Monotone Periodic Orbits for Torus Homeomorphisms

Let f be a homeomorphism of the torus isotopic to the identity and suppose that there exists a periodic orbit with a non-zero rotation vector ( q , r q ). Then f has a topologically monotone periodic orbit with the same

متن کامل

Infinities of stable periodic orbits in systems of coupled oscillators.

We consider the dynamical behavior of coupled oscillators with robust heteroclinic cycles between saddles that may be periodic or chaotic. We differentiate attracting cycles into types that we call phase resetting and free running depending on whether the cycle approaches a given saddle along one or many trajectories. At loss of stability of attracting cycling, we show in a phase-resetting exam...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the American Mathematical Society

سال: 1992

ISSN: 0002-9939

DOI: 10.1090/s0002-9939-1992-1098406-9